Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Da-Xin Shi and Hong-Liang Chen

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People' Republic of China

Correspondence e-mail:
|xf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.113$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4^{\prime}-(4-Methoxyphenyl)-1'-methyl-4", $5^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}-$ tetrahydro-1 H-indole-3-spiro-2'-pyrrolidine-3^{\prime}-spiro- $2^{\prime \prime}$-(thiazolo[3,2-a]pyrimidine)-2(3H),$3^{\prime \prime}\left(2^{\prime \prime} H\right)$-dione

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$, two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a 6,7-dihydro-5H-thiazolo[3,2-a]pyrimidin3 -one ring. Two molecules are connected into a centrosymmetric dimer by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported. The compound was synthesized by the intermolecular [$3+2$]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-(4-methoxybenzylidene)-6,7-dihydro-5H-thiazolo[3,2a]pyrimidin-3-one (Mohan \& Verma, 1993).

(I)

The molecular structure of (I) is shown in Fig. 1. There are two spiro junctions in the molecule which consists of a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-a]pyrimidine ring. Two molecules are linked into a centrosymmetric dimer by two $\mathrm{N} 4-\mathrm{H} \cdots \mathrm{N} 2$ hydrogen bonds, with an $\mathrm{N} \cdots \mathrm{N}$ distance of 2.887 (2) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle 169°.

Experimental

A mixture of 2-(4-methoxybenzylidene)-6,7-dihydro-5 H -thiazolo-[3,2-a]pyrimidin-3-one $(1 \mathrm{mmol})$, isatin $(1 \mathrm{mmol})$ and sarcosine (1 mmol) was refluxed in methanol (60 ml) until the disappearance of the starting material, as evidenced by thin-layer chromatography. When the reaction was complete, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=2: 1$), giving the title compound (I) (m.p. 506 K); IR (KBr): $3351.4(-\mathrm{NH}), 1723.6,1689.2(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta\right.$, p.p.m.): $1.15\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 1.65\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right)$,

Received 7 August 2003
Accepted 26 August 2003
Online 30 August 2003

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids.

Figure 2
The crystal packing of (I), viewed along the a axis.
2.27(s, 3H, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.25\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(m, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63(m$, $\left.1 \mathrm{H},-\mathrm{CH}_{2}\right), 3.73\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right) 3.99\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 4.58(m, 1 \mathrm{H}$, $-\mathrm{CH}), 6.75-7.47(m, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.55(b s, 1 \mathrm{H},-\mathrm{NH}) .20 \mathrm{mg}$ of (I) were dissolved in 15 ml dioxane; the solution was kept at room temperature for 15 d and natural evaporation gave colorless, single crystals of (I) suitable for X-ray analysis.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} & Z=2 \\
M_{r}=448.53 & D_{x}=1.317 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Triclinic, } P \overline{1} & \text { Mo } K \alpha \text { radiation } \\
a=8.660(3) \AA & \text { Cell parameters from } 692 \\
b=9.843(4) \AA & \text { reflections } \\
c=14.095(6) \AA & \theta=2.5-24.7^{\circ} \\
\alpha=88.374(7)^{\circ} & \mu=0.18 \mathrm{~mm}^{-1} \\
\beta=73.054(6)^{\circ} & T=293(2) \mathrm{K} \\
\gamma=79.895(6)^{\circ} & \text { Plate, colorless } \\
V=1131.1(8) \AA^{\circ} & 0.30 \times 0.20 \times 0.10 \mathrm{~mm}
\end{array}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.861, T_{\text {max }}=0.980$
6236 measured reflections
4585 independent reflections
3567 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 10$
$l=-10 \rightarrow 17$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
4585 reflections
301 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1

Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.04	$2.887(4)$	169

Symmetry code: (i) $-x, 1-y, 2-z$.
H atoms were positioned geometrically and treated in the ridingmodel approximation $\left[\mathrm{C}-\mathrm{H}=0.93-0.98 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.
Mohan, J. \& Verma, P.(1993). Indian J. Chem. Sect. B, 32, 986-988.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

